Industrial nameplates serve as a means of conveying critical information and parameters. In this work, we propose a novel approach for rectifying industrial nameplate pictures utilizing a probabilistic Hough transform. Our method effectively corrects for distortions and clipping, and features a collection of challenging nameplate pictures for analysis. To determine the corners of the nameplate, we employ a progressive probability Hough transform, which not only enhances detection accuracy but also possesses the ability to handle complex industrial scenarios. The results of our approach are clear and readable nameplate text, as demonstrated through experiments that show improved accuracy in model identification compared to other methods.