ABSTRACT:The traditional fusion methods are based on the fact that the spectral ranges of the Panchromatic (PAN) and multispectral bands (MS) are almost overlapping. In this paper, we propose a new pan-sharpening method for the fusion of PAN and SWIR (short-wave infrared) bands, whose spectral coverages are not overlapping. This problem is addressed with a convolutional neural network (CNN), which is trained by WorldView-3 dataset. CNN can learn the complex relationship among bands, and thus alleviate spectral distortion. Consequently, in our network, we use the simple three-layer basic architecture with 16×16 kernels to conduct the experiment. Every layer use different receptive field. The first two layers compute 512 feature maps by using the 16×16 and 1×1 receptive field respectively and the third layer with a 8×8 receptive field. The fusion results are optimized by continuous training. As for assessment, four evaluation indexes including Entropy, CC, SAM and UIQI are selected built on subjective visual effect and quantitative evaluation. The preliminary experimental results demonstrate that the fusion algorithms can effectively enhance the spatial information. Unfortunately, the fusion image has spectral distortion, it cannot maintain the spectral information of the SWIR image.
ABSTRACT:The GaoFen-2 satellite (GF-2) is a self-developed civil optical remote sensing satellite of China, which is also the first satellite with the resolution of being superior to 1 meter in China. In this paper, we propose a pan-sharpening method based on guided image filtering, apply it to the GF-2 images and compare the performance to state-of-the-art methods. Firstly, a simulated low-resolution panchromatic band is yielded; thereafter, the resampled multispectral image is taken as the guidance image to filter the simulated low resolution panchromatic Pan image, and extracting the spatial information from the original Pan image; finally, the pan-sharpened result is synthesized by injecting the spatial details into each band of the resampled MS image according to proper weights. Three groups of GF-2 images acquired from water body, urban and cropland areas have been selected for assessments. Four evaluation metrics are employed for quantitative assessment. The experimental results show that, for GF-2 imagery acquired over different scenes, the proposed method can not only achieve high spectral fidelity, but also enhance the spatial details.
Drainage network pattern recognition is a significant task with wide applications in geographic information mining, map cartography, water resources management, and urban planning. Accurate identification of spatial patterns in river networks can help us understand geographic phenomena, optimize map cartographic quality, assess water resource potential, and provide a scientific basis for urban development planning. However, river network pattern recognition still faces challenges due to the complexity and diversity of river networks. To address this issue, this study proposes a river network pattern recognition method based on graph convolutional networks (GCNs), aiming to achieve accurate classification of different river network patterns. We utilize binary trees to construct a hierarchical tree structure based on river reaches and progressively determine the tree hierarchy by identifying the upstream and downstream relationships among river reaches. Based on this representation, input features for the graph convolutional model are extracted from both spatial and geometric perspectives. The effectiveness of the proposed method is validated through classification experiments on four types of vector river network data (dendritic, fan-shaped, trellis, and fan-shaped). The experimental results demonstrate that the proposed method can effectively classify vector river networks, providing strong support for research and applications in related fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.