Wheat-rye T1BL.1RS translocation is widespread worldwide as the genes on 1RS arm have positive effect on stress resistance, grain yield and adaptation ability of wheat. Nowadays, the T1BL.1RS wheat cultivars have become susceptible to rust diseases because of the monophyletic ('Petkus') origin of 1RS. Here we report and discuss the production and detailed investigation of a new T1BL.1RS translocation line carrying 1RS with widened genetic base originating from Secale cereanum. Line '179' exhibited improved spike morphology traits, resistance against stripe rust and leaf rust, as well as higher tillering capacity, fertility and dietary fiber (arabynoxylan) content than the parental wheat genotype. Comparative analyses based on molecular cytogenetic methods and molecular (SSR and DArTseq) makers indicate that the 1RS arm of line '179' is a recombinant of S. cereale and S. strictum homologues, and approximately 16% of its loci were different from that of 'Petkus' origin. 162 (69.5%) 1RS-specific markers were associated with genes, including 10 markers with putative disease resistance functions and LRR domains found on the subtelomeric or pericentromeric regions of 1RS. Line '179' will facilitate the map-based cloning of the resistance genes, and it can contribute to healthy eating and a more cost-efficient wheat production. Interspecific hybridization is one of the most promising way to improve the genetic diversity of bread wheat 1. The most widely known wheat-alien introgression has been the spontaneous translocation T1BL.1RS that is traced back to the cross of wheat 'Criewener 104' × rye 'Petkus Roggen' made in Germany between 1920 and 1930 2. Its effect on morphology and baking quality of bread wheat has been investigated in numerous studies. The positive effect of this translocation on grain yield of hexaploid wheat 3,4 and durum wheat 5,6 is commonly accepted, though in some cases no such effect was shown 7,8. Association between the presence of 1RS and increase in root biomass, water use efficiency as well as harvest index was also found in glasshouse and field experiments 9,10. 1RS arm also contains genes (Pm8, Lr26, Sr31 and Yr9) providing resistance against powdery mildew (Erysiphe graminis f. sp. tritici), leaf rust (Puccinia triticina), stem rust (Puccinia graminis f. sp. tritici), and stripe or yellow rust (Puccinia striiformis f. sp. tritici), respectively 11,12 , a reason that led to the widespread utilization of the T1BL.1RS translocation in wheat improvement. However, the resistance genes Lr26, Yr9 and Pm8 are no longer effective against new virulent biotypes of the pathogens in Europe 13. Virulence to the Sr31 resistance gene has also been reported from Uganda 14 , and from Kenya, Ethiopia, Sudan, and Iran 15. Spread of the Sr31-virulent pathotype in countries where wheats carrying the T1BL.1RS chromosome are cultivated can cause serious problems for agriculture as the genetic vulnerability of T1BL.1RS cultivars is the consequence of the lack of allelic variation on the 'Petkus'-derived 1RS arm 4. ...