In unstimulated conditions, osteoclast (OC) formation is regulated by stromal cell production of the key osteoclastogenic factors receptor activator of nuclear factor B ligand (RANKL) and macrophage colonystimulating factor (M-CSF). However, the mechanisms of accelerated osteoclastogenesis and bone loss characteristic of inflammatory conditions are poorly understood but appear to involve T cells. In addition, the mechanism by which OCs arise spontaneously in cultures of peripheral blood mononuclear cells in the absence of stromal cells or added cytokines remains unclear. Using a stromal cell free human osteoclast generating system, we investigated the ability of activated T cells to support osteoclastogenesis. We show that when activated by phytohemagglutinin-P (PHA), T cells (both CD4؉ and CD8 ؉ ) stimulate human OC formation in vitro. Although both soluble M-CSF and RANKL were detected in activated T cell supernatants, the presence of M-CSF was not essential for macrophage survival or RANKL-dependent osteoclast formation, suggesting that other soluble T cell-derived factors were capable of substituting for this cytokine. We also found that saturating concentrations of osteoprotegerin (OPG) failed to neutralize 30% of the observed OC formation and that T cell conditioned medium (