Antibiotic-resistant pathogens are a public health threat that has rapidly spread over decades due to continuous and uncontrolled administration of antimicrobial medicines, becoming an ever-increasing worldwide concern. Since the past decade, no significant innovations have been made, so the search for new compounds that face multidrug-resistant pathogens is critically important. Plant-symbiont microorganisms are capable of producing a variety of bioactive natural products, making it possible to treat several infectious diseases. Biotechnological processes using microorganisms have been increasing in recent years since the discovery of Paclitaxel, an important antimitotic produced by the endophyte Taxomyces andreanae. It was isolated for the first time from the native tree of Pacific Taxus brevifolia. Several studies have demonstrated the isolation and characterization of promising and potent substances capable of inhibiting these pathogens. In addition, both rhizospheric and endophytic communities represent an unexplored reserve of unique chemical structures for drug development. This chapter focuses on the potential of plant-derived microorganisms as a source of bioactive substances and the perspectives for further studies and their application.