Background
Very long chain fatty acids (VLCFA) and their derivatives are industrially attractive compounds. The most important are behenic acid (C22:0) and erucic acid (C22:1Δ13), which are used as lubricants, and moisturizers. C22:0 and C22:1Δ13 have also potential for biofuel production. These fatty acids are conventionally obtained from plant oils. Yarrowia lipolytica is an oleaginous yeast with a long history of gene manipulations resulting in the production of industrially interesting compounds, such as organic acids, proteins, and various lipophilic molecules. It has been shown previously that it has potential for the production of VLCFA enriched single cell oils.
Results
The metabolism of Y. lipolytica was redesigned to achieve increased production of VLCFA. The effect of native diacylglycerol acyltransferases of this yeast YlLro1p, YlDga1p, and YlDga2p on the accumulation of VLCFA was examined. It was found that YlDga1p is the only enzyme with a beneficial effect. Further improvement of accumulation was achieved by overexpression of 3-ketoacyl-CoA synthase (TaFAE1) under 8UAS-pTEF promoter and blockage fatty acid degradation pathway by deletion of YlMFE1. The best-producing strain YL53 (Δmfe, pTEF-YlDGA1, 8UAS-pTEF-TaFAE1) produced 120 µg of very long chain fatty acids per g of produced biomass, which accounted for 34% of total fatty acids in biomass.
Conclusions
Recombinant strains of Y. lipolytica have proved to be good producers of VLCFA. Redesign of lipid metabolism pathways had a positive effect on the accumulation of C22:1Δ13 and C22:0, which are technologically attractive compounds.