Photocatalytic degradation of organic contaminants from petroleum refinery wastewater under UV and sunlight was investigated by immobilizing nanosized TiO2 photocatalyst into the structure of as-synthesized Fe-ZSM-5 zeolite via sol-gel method. Pure phase of TiO2/Fe-ZSM-5 photocatalyst with specific surface area of 304.6 m(2) g(-1) and loaded TiO2 of 29.28% was successfully synthesized. Effects of various operational parameters on treatment process were investigated by use of Response Surface Methodology (RSM). Maximum reduction of 80% COD was achieved at pH of 4, a photocatalyst concentration of 2.1 g l(-1), temperature of 45 °C and UV exposure time of 240 min. Gas chromatography-mass demonstrated an apparent shift in molecular weight from a higher fraction to a lower fraction even under sunlight. It is expected that the prepared photocatalyst is able to use ultraviolet and visible light energy. Results indicated that removal of COD degradation did not decrease as the reuse cycle of photocatalyst increased. Moreover, the potential to use sunlight energy and the simplicity of operation make photocatalysis an attractive prospect in terms of petroleum refinery wastewater treatment.