Polyhydroxyalkanoates are biodegradable, natural polyesters with the potential to replace petroleum‐based plastics. However, high production costs limit their competitiveness. This study assessed the ability of Halomonas boliviensis, a halophilic bacterium, to synthesize polyhydroxybutyrate (PHB) from an agricultural residue, oil palm empty fruit bunch (OPEFB), in highly saline solutions that minimize contamination risk. OPEFB, containing glucose, xylose, and arabinose, offers a cost‐effective alternative to pure sugar substrates and aids in waste management. PHB production from OPEFB was compared with fermentations using these sugars. H. boliviensis successfully synthesized PHB from all substrates, achieving the highest PHB content from glucose (54.63%), followed by xylose (40.18%), OPEFB (33.59%), and arabinose (33.52%). Glucose in the OPEFB hydrolysate was entirely depleted after 72 h, while xylose showed minimal consumption. This research highlights the potential of using low‐cost carbon sources like OPEFB for PHB production. Future research should focus on optimizing the fermentation process to increase PHB yields, making it a more viable alternative to traditional plastics.