2022
DOI: 10.1016/j.jmsy.2021.12.010
|View full text |Cite
|
Sign up to set email alerts
|

Productivity prediction in aircraft final assembly lines: Comparisons and insights in different productivity ranges

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
4
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 16 publications
(5 citation statements)
references
References 70 publications
0
4
0
1
Order By: Relevance
“…Equation ( 4) demonstrates that the sum of the number of MO and AO cannot exceed the upper limit number of workers in the workshop. Equation (5) shows that the number of workstations in area i is less than or equal to the maximum number of workstations limited in that area. Equation ( 6) means that the number of AO is non-negative.…”
Section: Metamodel-based Multi-response Optimization Methodsmentioning
confidence: 99%
See 2 more Smart Citations
“…Equation ( 4) demonstrates that the sum of the number of MO and AO cannot exceed the upper limit number of workers in the workshop. Equation (5) shows that the number of workstations in area i is less than or equal to the maximum number of workstations limited in that area. Equation ( 6) means that the number of AO is non-negative.…”
Section: Metamodel-based Multi-response Optimization Methodsmentioning
confidence: 99%
“…Considering the resource factor level and the sample size comprehensively, a complete 3 5 factorial design with two centers is chosen to study the overall factor influence of the general assembly line. This would require a simulation running for a total of 243 different design points.…”
Section: Sensitivity Analysis and Doe Of Resource Factorsmentioning
confidence: 99%
See 1 more Smart Citation
“…Anomaly detection [54] Root cause analysis of production disturbances or casual-relationship discovery [55] Production performance prediction [56], Human behavior control [57] Predictive scheduling [58], Adaptive production control [59] Figure 1. Four-Level and Four-Know categorization of ML applications.…”
Section: Systemmentioning
confidence: 99%
“…Este aspecto tiene especial incidencia en algunas empresas como las pertenecientes al sector de las confecciones [1], donde las técnicas basadas en inteligencia artificial permiten lograr resultados bastante buenos. Igualmente, en algunas otras empresas [2] como las aeronáuticas los modelos predictivos, de simulación y aprendizaje automático han permitido optimizar su sistema de producción. En este mismo sentido, estas técnicas pueden ser usadas en campos tan diversos como la predicción de la productividad de petrolero [3].…”
Section: Introductionunclassified