SUMMARYVirtualization is emerging as the prominent approach to mutualise the energy consumed by a single server running multiple Virtual Machines (VMs) instances. The efficient utilization of virtualized servers and/or computing resources requires understanding of the overheads in energy consumption and the throughput, especially on high-demanding High Performance Computing (HPC) platforms. In this paper, a novel holistic model for the power of virtualized computing nodes is proposed. Moreover, we create and validate instances of the proposed model using concrete measures taken during a benchmarking process that reflects an HPC usage, i.e. HPCC, IOZone and Bonnie++, conducted using two different hardware configurations on Grid5000 platform, based on Intel and AMD processors, and three widespread virtualization frameworks, namely Xen, KVM, and VMware ESXi. The proposed holistic model of machine power takes into account the impact of utilisation metrics of the machine's components, as well as the employed application, virtualization, and hardware. The model is further derived using tools such as multiple linear regressions or neural networks that prove its elasticity, applicability and accuracy. The purpose of the model is to enable the estimation of energy consumption of virtualized platforms, aiming to make possible the optimization, scheduling or accounting in such systems, or their simulation.