Notch signaling is evolutionarily conserved and operates in many cell types and at various stages during development. Notch signaling must therefore be able to generate appropriate signaling outputs in a variety of cellular contexts. This need for versatility in Notch signaling is in apparent contrast to the simple molecular design of the core pathway. Here, we review recent studies in nematodes, Drosophila and vertebrate systems that begin to shed light on how versatility in Notch signaling output is generated, how signal strength is modulated, and how cross-talk between the Notch pathway and other intracellular signaling systems, such as the Wnt, hypoxia and BMP pathways, contributes to signaling diversity.Key words: Cis-inhibition, Delta-like, Signaling diversity, Jagged, Notch, Notch intracellular domain Introduction Cells need to sense cues from their extracellular environment and integrate this information into appropriate developmental or physiological responses. Although there are a number of mechanisms that relay information from the exterior of the cell to the interior, a relatively small set of highly evolutionarily conserved signaling pathways stand out as playing particularly crucial roles in this transmission of information. In this roster of 'elite' intracellular signaling mechanisms are the Wnt pathway, the sonic hedgehog (Shh) pathway, the bone morphogenetic protein/transforming growth factor (BMP/TGF) pathway, phosphatidylinositol 3-kinase/thymoma viral proto-oncogene (PI3K/AKT) and Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling, and, the subject of this review, the Notch signaling pathway. Each of these pathways converts information about the concentration of extracellular ligands into specific transcriptional responses in the nucleus. In most cases, the signaling mechanism consists of the 'core' signaling pathway, i.e. the minimal set of protein components required for transducing the signal, and a more elaborate set of 'auxiliary' proteins, which, in various ways, impinge upon the core pathway and modify the signal but are not intrinsically necessary for relaying the signal.Among these highly conserved pathways (Gazave et al., 2009;Richards and Degnan, 2009), the Notch signaling pathway scores highly with regard to simplicity in molecular design, as it contains only a small number of core signaling components (Fig. 1). Despite this, Notch signaling affects cell differentiation decisions not only across a wide spectrum of metazoan species, but also across a broad range of cell types in a single organism and at different steps during cell lineage progression. The pleiotropic actions of Notch in different cell types and organs have recently been reviewed and are summarized in Table 1. In keeping with its important role in many cell types, the mutation of Notch genes leads to diseases in various organs and tissues (Table 2). These studies highlight the fact that the Notch pathway must be able to elicit appropriate responses in many spatially and temporally...