Background
The impact of albumin-to-alkaline phosphatase ratio (AAPR) on prognosis in cancer patients remains uncertain, despite having multiple relevant studies in publication.
Methods
We systemically compiled literatures from 3 databases (Cochrane Library, PubMed, and Web of Science) updated to May 24th, 2020. Hazard ratios (HRs) and 95% confidence intervals (CIs) were computed and synthesized using STATA 14, values were then pooled and utilized in order to assess the overall impact of AAPR on patient’s prognosis.
Results
In total, 18 studies involving 25 cohorts with 7019 cases were incorporated. Pooled results originated from both univariate and multivariate analyses (HR = 2.14, 95%CI:1.83–2.51, random-effects model; HR = 1.93, 95%CI:1.75–2.12, fixed-effects model; respectively) suggested that decreased AAPR had adverse effect on overall survival (OS). Similarly, pooled results from both univariate and multivariate analysis of fixed-effects model, evinced that decreased AAPR also had adverse effect on disease-free survival (DFS) (HR = 1.81, 95%CI:1.60–2.04, I2 = 29.5%, P = 0.174; HR = 1.69, 95%CI:1.45–1.97, I2 = 13.0%, P = 0.330; respectively), progression-free survival (PFS) (HR = 1.71, 95%CI:1.31–2.22, I2 = 0.0%, P = 0.754; HR = 1.90, 95%CI:1.16–3.12, I2 = 0.0%, P = 0.339; respectively), and cancer-specific survival (CSS) (HR = 2.22, 95%CI:1.67–2.95, I2 = 5.6%, P = 0.347; HR = 1.88, 95%CI:1.38–2.57, I2 = 26.4%, P = 0.244; respectively). Admittedly, heterogeneity and publication bias existed, but stratification of univariate meta-analytic results, as well as adjusted meta-analytic results via trim and fill method, all showed that AAPR still significantly correlated with poor OS despite of confounding factors.
Conclusions
In summary, decreased AAPR had adverse effect on prognosis in cancer patients. As an inexpensive and convenient ratio derived from liver function test, AAPR might become a promising indicator of prognosis in human cancers.