Parkinson’s disease is one of the most common neurodegenerative disorders characterized by a multitude of motor and non-motor clinical symptoms resulting from the progressive and long-lasting abnormal loss of nigrostriatal dopaminergic neurons. Currently, the available treatments for patients with Parkinson’s disease are limited and exert only symptomatic effects, without adequate signs of delaying or stopping the progression of the disease. Atsttrin constitutes the bioengineered protein which ultrastructure is based on the polypeptide chain frame of the progranulin (PGRN), which exerts anti-inflammatory effects through the inhibition of TNFα. The conducted preclinical studies suggest that the therapeutic implementation of Atsttrin may be potentially effective in the treatment of neurodegenerative diseases that are associated with the occurrence of neuroinflammatory processes. The aim of the proposed study was to investigate the effect of direct bilateral intracerebral administration of Atsttrin using stereotactic methods in the preclinical C57BL/6 mouse model of Parkinson’s disease inducted by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication. The analysis of the dose dependency effects of the increasing doses of Atsttrin has covered a number of parameters and markers regarding neurodegenerative processes and inflammatory responses including IL-1α, TNFα, IL-6, TH, and TG2 mRNA expressions. Accordingly, the evaluation of the changes in the neurochemical profile included DA, DOPAC, 3-MT, HVA, NA, MHPG, 5-HT, and 5-HIAA concentration levels. The intracerebral administration of Atsttrin into the striatum effectively attenuated the neuroinflammatory reaction in evaluated neuroanatomical structures. Furthermore, the partial restoration of monoamine content and its metabolic turnover were observed. In this case, taking into account the previously described pharmacokinetic profile and extrapolated bioavailability as well as the stability characteristics of Atsttrin, an attempt was made to describe as precisely as possible the quantitative and qualitative effects of increasing doses of the compound within the brain tissue microenvironment in the presented preclinical model of the disease. Collectively, this findings demonstrated that the intracerebral administration of Atsttrin may represent a potential novel therapeutic method for the treatment of Parkinson’s disease.