Deformational characteristics of a controlled-clearance piston-cylinder (CCPC) have been evaluated to precisely estimate the pressure dependence of its effective area. Among the experimentally accessible characteristics, the jacket pressure coefficient d, which denotes the relative change in the effective area due to applied jacket pressure pj, is examined in this paper. Two methods for precisely determining d at pressures up to 1 GPa are proposed. One is a comparative method that uses a set of a pressure balance and a multiplier as the tare gauge. The other is a new method that uses precise pressure transducers as monitoring devices. Both pj and weights loaded on the CCPC are changed so that the pressure generated by the CCPC remains constant, which is monitored by the transducers. d is estimated by the relative change in the weights loaded on the CCPC itself. Using the two methods, d for a 1 MPa kg−1 CCPC is measured at pressures up to 1 GPa. At each system pressure, d obtained by each method is approximated by a linear function of pj. The consistency of the fit values of d by the two methods is confirmed. The method using pressure transducers as monitoring devices is advantageous in terms of efficiency and operability especially at higher pressures.