Calibration, after initial installation, of the proposed two wavelength LIDAR Thomson Scattering System requires no access to the front end and does not require a foreign gas fill for Raman scattering. As already described, the variation of solid angle of collection with scattering position is a simple geometrical variation over the unvignetted region. The additional loss over the vignetted region can easily be estimated and in the case of a small beam dump located between the Be tiles, it is within the specified accuracy of the density. The only additional calibration is the absolute spectral transmission of the front-end optics. Over time we expect the transmission of the two front-end mirrors to suffer a deterioration mainly due to depositions. The reduction in transmission is likely to be worse towards the blue end of the scattering spectrum. It is therefore necessary to have a method to monitor such changes and to determine its spectral variation. Standard methods use two lasers at different wavelength with a small time separation. Using the two-wavelength approach, a method has been developed to determine the relative spectral variation of the transmission loss, using simply the measured signals in plasmas with peak temperatures of 4–6 keV . Comparing the calculated line integral of the fitted density over the full chord to the corresponding interferometer data we also have an absolute calibration. At the outer plasma boundary, the standard resolution of the LIDAR Thomson Scattering System is not sufficient to determine the edge gradient in an H-mode plasma. However, because of the step like nature of the signal here, it is possible to carry out a deconvolution of the scattered signals, thereby achieving an effective resolution of ∼ 1–2 cm in the outer 10–20 cm.