The impacts of plasma disruptions on ITER have been investigated in detail to confirm the robustness of the design of the machine to the potential consequential loads. The loads include both electro-magnetic (EM) and heat loads on the in-vessel components and the vacuum vessel. Several representative disruption scenarios are specified based on newly derived physics guidelines for the shortest current quench time as well as the maximum product of halo current fraction and toroidal peaking factor arising from disruptions in ITER. Disruption simulations with the DINA code and EM load analyses with a 3D finite element method code are performed for these scenarios. Some margins are confirmed in the EM load on in-vessel components due to induced eddy and halo currents for these representative scenarios. However, the margins are not very large. The heat load on various parts of the first wall due to the vertical movement and the thermal quench (TQ) is calculated with a 2D heat conduction code based on the database of heat deposition during disruptions and simulation results with the DINA code. For vertical displacement event, it is found that the beryllium (Be) wall does not melt during the vertical movement, prior to the TQ. Significant melting is anticipated for the upper Be wall and the tungsten divertor baffle due to TQ after the vertical movement. However, its impact could be substantially mitigated by implementing a reliable detection system of the vertical movement and a mitigation system, e.g. massive noble gas injection. Some melting of the upper Be wall is anticipated at major disruptions. At least several tens of unmitigated disruptions must be considered even if an advanced prediction/mitigation system is implemented. With these unmitigated disruptions, the loss of the Be layer is expected to be within ≈30–100 µm/event out of a 10 mm thick Be first wall.
The concept for a compact DEMO reactor named 'SlimCS' is presented. Distinctive features of the concept are low aspect ratio (A = 2.6) and use of a reduced-size centre solenoid (CS) which has the function of plasma shaping rather than poloidal flux supply. The reduced-size CS enables us to introduce a thin toroidal field coil system which contributes to reducing the weight and perhaps lessening the construction cost. Low-A has merits of vertical stability for high elongation (κ) and high normalized beta (β N ), which leads to a high power density with reasonable physics requirements. This is because high κ facilitates high n GW (because of an increase in I p ), which allows efficient use of the capacity of high β N . From an engineering aspect, low-A may ensure ease in designing blanket modules robust to electromagnetic forces acting on disruptions. Thus, a superconducting low-A tokamak reactor such as SlimCS can be a promising DEMO concept with physics and engineering advantages.
The time dependence of the current decay during the current quench phase of disruptions, which can significantly influence the electromagnetic force on the in-vessel components due to the induced eddy currents, is investigated using data obtained in JT-60U experiments in order to derive a relevant physics guideline for the predictive simulations of disruptions in ITER. It is shown that an exponential decay can fit the time dependence of current quench for discharges with large quench rate (fast current quench). On the other hand, for discharges with smaller quench rate (slow current quench), a linear decay can fit the time dependence of current quench better than exponential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.