Capillary electromigration techniques are often considered ideal methods for enantioseparations due to their high separation selectivity and flexibility. Thus, numerous methods employing a chiral selector as pseudostationary phase in a background electrolyte have been developed and applied for the chiral analysis of drugs in bulk ware, pharmaceutical formulations and biological matrices. Furthermore, electromigration techniques have been combined with spectroscopic methods such as nuclear magnetic resonance in order to understand the complexation of analytes by chiral selectors. The present review focuses on recent developments and applications of chiral electromigration techniques in pharmaceutical and biomedical analysis including examples illustrating analyte-selector complex formation or mechanistic studies which have been published between January 2009 and July 2011. Selector-mediated chiral separations clearly dominate while no applications of capillary electrochromatography to pharmaceutical or biomedical analysis have been reported during this period of time.