For measuring the thrust of combined nozzles in satellite thruster with a small space, the test method that the nozzle directly sprays on the load baffle is employed in this paper. The key problem is how to design the positions of 10 load baffles and how to construct the measurement system. A set of complete and automatic nozzle thrust measurement system is designed and built, and the influence of the load baffle applied on the flow field of nozzles is analyzed using the software FLUENT. Furthermore, the load surface locations of the sensors for the different types of nozzles are analyzed. We draw the conclusion that the load baffle position should range from 4–8 mm for the I-type nozzle and range in 6–12 mm for II-type and III-type nozzle. The correction coefficients of the thrust forces for all channels of the measurement system are determined in the calibration experiment. The uncertainty of measurement system is estimated and the error source of the measurement system is traced. We found that the systematic uncertainty is mainly contributed by the A-type uncertainty which is related with the nozzle dimension and its inner structure. The B-type uncertainty of system is contributed by the force sensor.