Melanoma is an aggressive skin malignancy with a high mortality. Astrocyte elevated gene-1 (AEG-1), a downstream target of Ras and c-Myc, has been implicated in the development of multiple tumours, but its role in melanoma remains unclear. In the present study, the role of AEG-1 in melanoma was explored through AEG-1 silencing. Our results showed that silencing AEG-1 inhibited the proliferation of melanoma cells, induced cell cycle arrest, and reduced levels of cyclin A, cyclin B, cyclin D1, cyclin E, and cyclin-dependent kinase 2. AEG-1silencing also induced apoptosis in melanoma cells and altered the levels of cleaved caspase-3, B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein. Moreover, silencing AEG-1 suppressed the migration and invasion of melanoma cells, reduced the expressions and activities of matrix metallopeptidase (MMP)-2 and MMP-9, and inhibited the activation of the Wnt/β-catenin signalling pathway in melanoma cells. Furthermore, in vivo experiments revealed that AEG-1 silencing inhibited the growth of melanoma xenografts in nude mice. In summary, our study demonstrates an oncogenic role of AEG-1 in melanoma and suggests that AEG-1 may serve as a potential therapeutic target in the treatment of melanoma.