Bioelectronic medicine requires the ability to monitor and modulate nerve activity in awake patients over time. The vagus nerve is a promising stimulation target, and preclinical models often use mice. However, an awake, chronic mouse vagus nerve interface has yet to be demonstrated. Here, we developed a functional wrappable microwire electrode to chronically interface with the small diameter mouse cervical vagus nerve (~100 μ m). In an acute setting, the wrappable microwire had similar recording performance to commercially available electrodes. A chronic, awake mouse model was then developed to record spontaneous compound action potentials (CAPs). Viable signal-to-noise ratios (SNRs) were obtained from the wrappable microwires between 30 and 60 days (n = 8). Weekly impedance measurements showed no correlation between SNR or time. The wrappable microwires successfully interfaced with small diameter nerves and has been validated in a chronic, awake preclinical model, which can better facilitate clinical translation for bioelectronic medicine.