Proton exchange membrane water electrolyzer (PEMWE) is a major enabler of green hydrogen production. The development of water electrolyzers is a vital step in driving the progress of a hydrogen-based economy. The system inside the electrolyzer is a zero-gap cell featuring low ohmic resistance and boosted mass transport, leading to higher energy efficiency and minimized capital cost. Besides, utilizing PEM in the electrolyzer for sustainable hydrogen production enables the system to perform with many advantages, including superior energy efficiency, higher hydrogen purity, and high flexibility. Therefore, as PEM electrolyzers continue to evolve, sustainable hydrogen production on a larger scale will be realized in the near future. This review summarizes the status quo of PEM water electrolyzers in the past four years. We will start with a brief introduction of the core of a water electrolyzer, namely the membrane electrode assembly (MEA), which will be followed by an introduction of fabrication methods of MEA, including catalyst-coated membrane (CCM) methods, catalyst-coated electrode (CCE) methods, and other innovative fabrication methods. Next, we will summarize recent attempts to modify electrodes and membranes in MEAs to promote the performance of PEMWE. Subsequently, catalyst development for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in MEA is discussed, highlighting novel HER/OER catalysts and strategies to reduce the content of noble metals. Lastly, conclusion and perspectives are provided to present a blueprint to inspire the future development of PEMWE.