Purpose
As often in project scheduling, when the project duration is shortened to reduce total cost, the total float is lost resulting in more critical or nearly critical activities. This, in turn, results in reducing the probability of completing the project on time and increases the risk of schedule delays. The objective of project management is to complete the scope of work on time, within budget in a safe fashion of risk to maximize overall project success. The purpose of this paper is to present an effective algorithm, named as adaptive multiple objective differential evolution (DE) for project scheduling with time, cost and risk trade-off (AMODE-TCR).
Design/methodology/approach
In this paper, a multi-objective optimization model for project scheduling is developed using DE algorithm. The AMODE modifies a population-based search procedure by using adaptive mutation strategy to prevent the optimization process from becoming a purely random or a purely greedy search. An elite archiving scheme is adopted to store elite solutions and by aptly using members of the archive to direct further search.
Findings
A numerical construction project case study demonstrates the ability of AMODE in generating non-dominated solutions to assist project managers to select an appropriate plan to optimize TCR problem, which is an operation that is typically difficult and time-consuming. Comparisons between the AMODE and currently widely used multiple objective algorithms verify the efficiency and effectiveness of the developed algorithm. The proposed model is expected to help project managers and decision makers in successfully completing the project on time and reduced risk by utilizing the available information and resources.
Originality/value
The paper presented a novel model that has three main contributions: First, this paper presents an effective and efficient adaptive multiple objective algorithms named as AMODE for producing optimized schedules considering time, cost and risk simultaneously. Second, the study introduces the effect of total float loss and resource control in order to enhance the schedule flexibility and reduce the risk of project delays. Third, the proposed model is capable of operating automatically without any human intervention.