In this paper, we introduce a modified Krasnoselski–Mann type iterative method for capturing a common solution of a split mixed equilibrium problem and a hierarchical fixed point problem of a finite collection of k-strictly pseudocontractive nonself-mappings. Many of the algorithms for solving the split mixed equilibrium problem involve a step size which depends on the norm of a bounded linear operator. Since the computation of the operator norm is very difficult, we formulate our iterative algorithm in such a way that the implementation of the proposed algorithm does not require any prior knowledge of operator norm. Weak convergence results are established under mild conditions. We also establish strong convergence results for a certain class of hierarchical fixed point and split equilibrium problem. Our results generalize some important results in the recent literature.