A topological group G is Polish if its topology admits a compatible separable complete metric. Such a group is non-archimedean if it has a basis at the identity that consists of open subgroups. This class of Polish groups includes the profinite groups and (Qp, +) but our main interest here will be on non-locally compact groups.In recent years there has been considerable activity in the study of the dynamics of Polish non-archimedean groups and this has led to interesting interactions between logic, finite combinatorics, group theory, topological dynamics, ergodic theory and representation theory. In this paper I will give a survey of some of the main directions in this area of research.