Apart from being a vital and exciting field in mathematics with interesting results, projective spaces have various applications in design theory, coding theory, physics, combinatorics, number theory and extremal combinatorial problems. In this paper, we consider real, complex and quaternion projective spaces. We focus on the geometric feature of the sectional curvatures. We first study the real and complex projective spaces. We prove that their sectional curvatures are constant. Then, we consider the quaternion projective space. Specifically, we prove that the quaternion projective space has a positive constant sectional curvature. We also determine the pinching constant for the complex and quaternion projective spaces.