We show by a combination of theoretical argument and computer search that if a projective (75, 4, 12, 5) set in PG(3, 7) exists then its automorphism group must be trivial. This corresponds to the smallest open case of a coding problem posed by H. Ward in 1998, concerning the possible existence of an infinite family of projective two-weight codes meeting the Griesmer bound.Mathematics Subject Classification (2010). 05E20, 05B25, 94B05.