We have made striking progress in our understanding of the biochemistry and cell biology that underlies liver fibrosis and cirrhosis, including the development of strategies and agents to prevent and reverse fibrosis. However, translation of this knowledge into clinical practice has been hampered by (1) the limitation of many in vitro and in vivo models to confirm mechanisms and to test antifibrotic agents, and (2) the lack of sensitive methodologies to quantify the degree of liver fibrosis and the dynamics of fibrosis progression or reversal in patients. Furthermore, whereas cirrhosis and subsequent decompensation are accepted hard clinical endpoints, fibrosis and fibrosis progression alone are merely plausible surrogates for future clinical deterioration. In this review we focus on an optimized strategy for preclinical antifibrotic drug development and highlight the current and future techniques that permit noninvasive assessment and quantification of liver fibrosis and fibrogenesis. The availability of such noninvasive methodologies will serve as the pacemaker for the clinical development and validation of potent antifibrotic agents. (HEPATOLOGY 2009;50:1294-1306