Background. This study is aimed at identifying the important biomarkers associated with bone metastasis (BM) in breast cancer (BRCA). Methods. The GSE175692 dataset was used to detect significant differential expressed genes (DEGs) between BRCA samples with or without BM, and DEG-related pathways were then explored. Further, we constructed the protein-protein interaction (PPI) network on GEGs and filtered 5 vital nodes. We then performed the Cox regression, Kaplan-Meier analysis, nomogram, and ROC curve to filter the most significant prognosis genes. The GSE14020 and GSE124647 datasets were used to verify the expression and prognostic value of hub genes, respectively. Finally, the gene set enrichment analysis (GSEA) was performed to reveal the potential mechanism. Results. Totally, 74 DEGs were detected, which mainly correlated with infectious disease, signaling molecules, and interaction. The 5 important DEGs were then filtered, and the Cox regression further showed that 2 genes, including prominin 1 (PROM1) and C-C motif chemokine ligand 2 (CCL2), were related to the prognosis of BRCA metastasis patients. Especially, PROM1 presented a better prognostic performance on the survival probability of patients than CCL2. Verification analysis further confirmed the abnormal expression and significant prognostic influence of PROM1. Finally, GSEA revealed that PROM1 was negatively related to IGF1 and mTOR pathways in BRCA metastasis. Conclusion. PROM1 was an important biomarker associated with BRCA bone metastasis and affected the prognosis of metastatic BRCA patients. It may play a vital role in metastatic BRCA by negatively regulating IGF1 and mTOR pathways.