Industrial catalysts usually encounter great challenges in Cl• deactivation, toxic by-products generation, and stability with a long running operation for catalytic oxidation of chlorinated volatile organic compounds (CVOCs). In this research, spinel-type oxides with transition metal substituted as active oxides supported on cordierite (Crd) was identified to catalytic degradation of chlorobenzene (CB). The Cu1.4Mn1.6O4 spinel-type oxides considered as the main active oxides have been identified, which were confirmed by XRD and TEM. The activities of these CuMxMn2-xO4 catalysts were markedly improved by lower calcining temperature and shorter time. CuCe0.25Mn1.75O4/Crd catalyst displayed the highest activity and good stability due to that CeO2 nano-rods structure conducive to increase the Oads amount, the dispersion of active oxides, the strength of weak acidity, the surface areas and pore volume. Moreover, spinel-type with CeO2 doping exhibited high performance in CVOCs elimination attributed to the high storage capacity of oxygen, plentiful oxygen vacancies, good efficiency in breaking C-Cl bond and the easy shuttles between Ce 3+ and Ce 4+ , which were demonstrated by XPS. The results indicate that CeO2, Oads, and •OH have beneficial effects on the removing Cl• into benzene, and then improving the ring-opening of CB for CB degradation.