The confinement of laser interactions inside transparent materials assisted by tight optical focusing and short-pulsed nonlinear interactions has driven many high-resolution patterning and probing applications in science and technology. In thin transparent films, laser interactions confined to the film/substrate interface have underpinned blistering and ejection processes for nanofluidic channel fabrication, film patterning and cell catapulting. Here, we harness femtosecond lasers to drive nonlinear interactions within Fabry-Perot interference fringes to define narrow nanolength scale zones for highly resolved internal structuring of a film of refractive index, n film , at fringe maxima separated by l/2n film . This novel interaction internally cleaves the film to open subwavelength internal cavities and form thin membranes at single or multiple depths from which follow significant opportunities for writing multilevel nanofluidic channels inside the film, as well as ejecting nanodisks at quantized film depths for coloring and three-dimensional surface patterning that promise new compact types of lab-in-film devices.