Access from the University of Nottingham repository:http://eprints.nottingham.ac.uk/1002/1/ms_schamberg_PCP.pdf
Copyright and reuse:The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions. This article is made available under the University of Nottingham End User licence and may be reused according to the conditions of the licence. For more details see: http://eprints.nottingham.ac.uk/end_user_agreement.pdf
A note on versions:The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription. Abstract Planar cell polarity (PCP) occurs in the epithelia of many animals and can lead to the alignment of hairs, bristles and feathers; physiologically, it can organise ciliary beating. Here we present two approaches to modelling this phenomenon. The aim is to discover the basic mechanisms that drive PCP, while keeping the models mathematically tractable. We present a feedback and diffusion model, in which adjacent cell sides of neighbouring cells are coupled by a negative feedback loop and diffusion acts within the cell. This approach can give rise to polarity, but also to period two patterns. Polarisation arises via an instability provided a sufficiently strong feedback and sufficiently weak diffusion. Moreover, we discuss a conservative model in which proteins within a cell are redistributed depending on the amount of proteins in the neighbouring cells, coupled with intracellular diffusion. In this case polarity can arise from weakly polarised initial conditions or via a wave provided the diffusion is weak enough. Both models can overcome small anomalies in the initial conditions. Furthermore, the range of the effects of groups of cells with different properties than the surrounding cells depends on the strength of the initial global cue and the intracellular diffusion.