Background:
After a large intracerebral hemorrhage (ICH), the hematoma and swelling cause intracranial pressure (ICP) to increase, sometimes causing brain herniation and death. This is partly countered by widespread tissue compliance, an acute decrease in tissue volume distal to the stroke, at least in young healthy animals. Intracranial compensation dynamics seem to vary with age, but there is no data on old animals or those with hypertension, major factors influencing ICH risk and outcome.
Methods:
We assessed hematoma volume, edema, ICP, and functional deficits in young and aged spontaneously hypertensive rats (SHRs) and young normotensive control strains after collagenase-induced ICH. Macroscopic and microscopic brain volume fractions, such as contralateral hemisphere volume, cortical thickness, and neuronal morphology, were assessed via histological and stereological techniques.
Results:
Hematoma volume was 52% larger in young versus aged SHRs; surprisingly, aged SHRs still experienced proportionally worse outcomes following ICH, with 2× greater elevations in edema and ICP relative to bleed volume and 3× the degree of tissue compliance. Aged SHRs also experienced equivalent neurological deficits following ICH compared with their younger counterparts, despite the lack of significant age-related behavioral effects. Importantly, tissue compliance occurred across strains and age groups and was not impaired by hypertension or old age.
Conclusions:
Aged SHRs show considerable capacity for tissue compliance following ICH and seem to rely on such mechanisms more heavily in settings of elevated ICP. Therefore, the ICP compensation response to ICH mass effect varies across the lifespan according to risk factors such as chronic hypertension.