The properties of a broad 2.86 eV photoluminescence band in carbon-doped GaN were studied as a function of C-doping level, temperature, and excitation density. The results are consistent with a C Ga -C N deep donor-deep acceptor recombination mechanism as proposed by Seager et al. For GaN:C grown by molecular-beam epitaxy (MBE) the 2.86 eV band is observed in Si co-doped layers exhibiting high n-type conductivity as well as in semi-insulating material. For low excitation density (4 W/cm 2 ) the 2.86 eV band intensity decreases as a function of cw-laser exposure time over a period of many minutes. The transient behavior is consistent with a model based on carrier diffusion and charge trapping-induced Coulomb barriers. The temperature dependence of the blue luminescence below 150 K was different for carbon-contaminated GaN grown by metalorganic vapor phase epitaxy (MOVPE) compared to C-doped MBE GaN.