In this study, a new approach was investigated to extract reference phases from the scanning acoustic microscope to calculate the speed of sound when dealing with the slope of the stage and fluctuation of the scanning lines. To capture the slope and the fluctuation pattern, data of the first lines along the horizontal and vertical axes on the stage were used. A corrective function was then utilized to improve the accuracy of reference phase extraction. The method was then corroborated by demonstrating tumor discrimination in mice skin by means of scanning acoustic microscopy (SAM). B16-F10 melanoma cells were used to grow the tumor. Hematoxylin and eosin (H&E) staining was applied for histology characterization of the sample. A comparison of both acoustics and histology was conducted. Phase analysis was performed to examine the effects of both slope and fluctuation. The results showed that our approach significantly improved the tumor detection and accuracy of scanning acoustic microscopy.