Real-life decision-making problem has been demonstrated to cover the indeterminacy through single valued neutrosophic set. It is the extension of interval valued neutrosophic set. Most of the problems of real life involve some sort of uncertainty in it among which, one of the famous problem is finding a shortest path of the network. In this paper, a new score function is proposed for interval valued neutrosophic numbers and SPP is solved using interval valued neutrosophic numbers. Additionally, novel algorithms are proposed to find the neutrosophic shortest path by considering interval valued neutrosophic number, trapezoidal and triangular interval valued neutrosophic numbers for the length of the path in a network with illustrative example. Further, comparative analysis has been done for the proposed algorithm with the existing method with the shortcoming and advantage of the proposed method and it shows the effectiveness of the proposed algorithm.Keywords Interval valued triangular neutrosophic number · Interval valued trapezoidal neutrosophic number · Ranking methods · Deneutrosophication · Neutrosophic shortest path problem · Network
Introduction and literature of reviewIn this part, introduction to the objective of the paper is given by presenting basic concepts and procedure of the shortest path problem (SPP) and the literature of review have been collected to know the recent work related to the presented concept which shows the novelty of the presented work * Said Broumi Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.