In this research paper, we propose the graph of the bipolar single-valued neutrosophic set (BSVNS) model. This graph generalized the graphs of single-valued neutrosophic set models. Several results have been proved on complete and isolated graphs for the BSVNS model. Moreover, an essential and satisfactory condition for the graphs of the BSVNS model to become an isolated graph of the BSVNS model has been demonstrated.
The single valued neutrosophic graph is a new version of graph theory presented recently as a generalization of fuzzy graph and intuitionistic fuzzy graph. The single valued neutrosophic graph (SVN-graph) is used when the relation between nodes (or vertices) in problems are indeterminate. In this paper, we examine the properties of various types of degrees, order and size of single valued neutrosophic graphs and a new definition for regular single valued neutrosophic graph is given.
In this paper, we first define the concept of bipolar single neutrosophic graphs as the generalization of bipolar fuzzy graphs, N-graphs, intuitionistic fuzzy graph, single valued neutrosophic graphs and bipolar intuitionistic fuzzy graphs.
This main purpose of this paper is to develop an algorithm to find the shortest path on a network in which the weights of the edges are represented by bipolar neutrosophic numbers. Finally, a numerical example has been provided for illustrating the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.