2020
DOI: 10.1007/s11128-020-02693-7
|View full text |Cite
|
Sign up to set email alerts
|

Properties of operator systems, corresponding to channels

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
4
0
1

Year Published

2020
2020
2022
2022

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 9 publications
(5 citation statements)
references
References 16 publications
0
4
0
1
Order By: Relevance
“…Удается показать, что любой операторный граф и в конечномерном, и в бесконечномерном случаях является замыканием линейной оболочки некоторого обобщенного разложения единицы [1,23]. Таким образом, вместо предположений о виде шума мы можем накладывать какие-то условия на представления единицы, порождающие операторный граф.…”
Section: квантовый шум и некоммутативные операторные графыunclassified
“…Удается показать, что любой операторный граф и в конечномерном, и в бесконечномерном случаях является замыканием линейной оболочки некоторого обобщенного разложения единицы [1,23]. Таким образом, вместо предположений о виде шума мы можем накладывать какие-то условия на представления единицы, порождающие операторный граф.…”
Section: квантовый шум и некоммутативные операторные графыunclassified
“…Recently, there have been some interests in infinite dimensional operator systems in quantum information theory (see e.g. [5,19]). In this respects, it seems that an analogue of [4,Corollary 4.5] in the infinite dimensional case could be a useful tool.…”
Section: Introductionmentioning
confidence: 99%
“…Finally, let us recall that a unital operator system T ⊆ L(H) is a graph system if it is closed under the weak- * -topology (see [16,19]). The following is a direct consequence of Theorem 3.17(a) and Corollary 3.9(b).…”
mentioning
confidence: 99%
“…So it could be meaningful to explore the problem of quantum error-correcting codes for graphs with parametrizations given in some separate way from mentioned error-correction formalism, in that description each conjecture on a graph also is the conjecture on a possible noise. It is shown [5][6][7], that any non-commutative operator graph is the closure of the linear envelope of some positive operator valued measure (POVM). So the problem of quantum error correction could be viewed in terms of POVMs.…”
Section: Introductionmentioning
confidence: 99%
“…Hence V is an operator system in the sense of [12]. Moreover any operator system is a non-commutative operator graph associated with some quantum channel [5][6][7]. If there is a projection P called a (quantum) anticlique [13] that has the property…”
Section: Introductionmentioning
confidence: 99%