In the present work, we suggest an approach for describing dynamics of finite-dimensional quantum systems in terms of pseudostochastic maps acting on probability distributions, which are obtained via minimal informationally complete quantum measurements. The suggested method for probability representation of quantum dynamics preserves the tensor product structure, which makes it favourable for the analysis of multi-qubit systems. A key advantage of the suggested approach is that minimal informationally complete positive operator-valued measures (MIC-POVMs) are easier to construct in comparison with their symmetric versions (SIC-POVMs). We establish a correspondence between the standard quantum-mechanical formalism and the MIC-POVM-based probability formalism. Within the latter approach, we derive equations for the unitary von-Neumann evolution and the Markovian dissipative evolution, which is governed by the Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) generator. We apply the MIC-POVM-based probability representation to the digital quantum computing model. In particular, for the case of spin-1/2 evolution, we demonstrate identifying a transition of a dissipative quantum dynamics to a completely classical-like stochastic dynamics. One of the most important findings is that the MIC-POVM-based probability representation gives more strict requirements for revealing the non-classical character of dissipative quantum dynamics in comparison with the SIC-POVM-based approach. Our results give a physical interpretation of quantum computations and pave a way for exploring the resources of noisy intermediate-scale quantum devices.
We perform a quantum information analysis for multi-mode Gaussian approximate position measurements, underlying noisy homodyning in quantum optics. The "Gaussian maximizer" property is established for the entropy reduction of these measurements which provides explicit formulas for computations including their entanglementassisted capacity. The case of one mode is discussed in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.