Osmosensing and osmoregulatory compatible solute accumulation by bacteria Wood, J.M.; Bremer, Erhard; Csonka, L.N.; Kraemer, R; Poolman, B.; van der Heide, Tiemen; Smith, L.T. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
AbstractBacteria inhabit natural and artificial environments with diverse and fluctuating osmolalities, salinities and temperatures. Many maintain cytoplasmic hydration, growth and survival most effectively by accumulating kosmotropic organic Ž . Ž . solutes compatible solutes when medium osmolality is high or temperature is low above freezing . They release these solutes into their environment when the medium osmolality drops. Solutes accumulate either by synthesis or by transport from the extracellular medium. Responses to growth in high osmolality medium, including biosynthetic accumulation of trehalose, also protect Salmonella typhimurium from heat shock. Osmotically regulated transporters and mechanosensitive channels modulate cytoplasmic solute levels in Bacillus subtilis, Corynebacterium glutamicum, Escherichia coli, Lactobacillus plantarum, Lactococcus lactis, Listeria monocytogenes and Salmonella typhimurium. Each organism harbours multiple osmoregulatory transporters with overlapping substrate specificities. Membrane proteins Ž that can act as both osmosensors and osmoregulatory transporters have been identified secondary transporters ProP of . E. coli and BetP of C. glutamicum as well as ABC transporter OpuA of L. lactis . The molecular bases for the modulation of gene expression and transport activity by temperature and medium osmolality are under intensive investigation with emphasis on the role of the membrane as an antenna for osmo-andror thermosensors. ᮊ 2001 Elsevier Science Inc. All rights reserved. Wood et al. r Comparati¨e Biochemistry and Physiology Part A 130 2001 437᎐460 438