An alkali-sensitive mutant, 38154, of the alkalophilic Bacillus sp. strain C-125 could not grow at an alkaline pH. The nucleotide sequence of a 3.7 kb parental DNA fragment that recovers the growth of 38154 at alkaline pH has four open reading frames (ORF1-4). By subcloning the fragment, we demonstrated that a 0.25 kb DNA region is responsible for the recovery. Direct sequencing of the mutant's corresponding region revealed a G to A substitution. The mutation resulted in an amino acid substitution from Gly-393 to Arg of the putative ORF1 product, which was deduced to be an 804-amino-acid polypeptide with a molecular weight of 89,070. The N-terminal part of the putative ORF1 product showed amino acid similarity to those of the chain-5 products of eukaryotic NADH quinone oxidoreductases. Membrane vesicles prepared from 38154 did not show membrane potential (delta psi)-driven Na+/H+ antiporter activity. Antiporter activity was resumed by introducing a parental DNA fragment which recovered the mutant's alkalophily. These results indicate that the mutation in 38154 affects, either directly or indirectly, the electrogenic Na+/H+ antiporter activity. This is the first report which shows that a gene responsible for the Na+/H+ antiporter system is important in the alkalophily of alkalophilic microorganisms.
The novel antifungal agent ASP2397 (Vical's compound ID VL-2397) is produced by the fungal strain MF-347833 that was isolated from Malaysian leaf litter and is identified here as an Acremonium species based on its morphology, physiological properties and 28S ribosomal DNA sequence. Because of its potential importance for producing novel antifungal agents, we determined the taxonomic and biologic properties of MF-347833. We show here that ASP2397 is a cyclic hexapeptide that chelates aluminum ion and is therefore similar to ferrichrome, a hydroxamate siderophore. However, ASP2397 differs structurally from licensed antifungal agents such as amphotericin B, triazoles and echinocandins. To understand the relationship between chemical structure and biological function, we isolated certain ASP2397 derivatives from the culture broth, and we further chemically converted the metal-free form to other derivatives.
The novel immunosuppressant AS1387392 has been isolated from Acremonium sp. No. 27082. This compound showed a strong inhibitory effect against mammalian histone deacetylase and T-cell proliferation. Further, AS1387392 showed a good oral absorption, and its plasma concentration was higher than that of FR235222, an analog of AS1387392 that inhibited histone deacetylase previously reported. Given these findings, AS1387392 may represent an important new lead in developing immunosuppressant.
Data from several studies suggest that tachykinins may play an important role in the pathophysiology of airway diseases, especially asthma. Our aim is to discover tachykinin antagonists which exhibit therapeutically useful anti-asthmatic activity. In our search for activities inhibiting the binding of [3H]substance P to guinea-pig lung membrane preparations, we have found that the fermentation product, WS9326A,isolated from Streptomyces violaceusniger, is a potent tachykinin receptor antagonist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.