Syringomycin E is an antifungal cyclic lipodepsinonapeptide that inhibits the growth of Saccharomyces cerevisiae by interaction with the plasma membrane. A screen conducted to find the yeast genes necessary for its fungicidal action identified two novel syringomycin E response genes, SYR3 and SYR4. A syr3 mutant allele was complemented by ELO2 and ELO3. These genes encode enzymes that catalyze the elongation of sphingolipid very long chain fatty acids. Tetrad analysis showed that SYR3 was ELO2. Strains with deletions of SYR3/ELO2 and ELO3 were resistant to syringomycin E, and lipid analyses of both mutants revealed shortened fatty acid chains and lower levels of sphingolipids. SYR4 was identified by Tn5 inactivation of genomic library plasmids that complemented a syr4 mutant allele. SYR4 was found to be identical to IPT1, which encodes the terminal sphingolipid biosynthetic enzyme, mannosyl-diinositolphosphoryl-ceramide synthase. Deletion ⌬syr4/ ipt1 strains were viable, were resistant to syringomycin E, did not produce mannosyl-diinositolphosphorylceramide, and accumulated mannosyl-inositolphosphoryl-ceramide. Accumulation of mannosyl-inositolphosphoryl-ceramide was not responsible for resistance since a temperature-sensitive secretory pathway mutant (sec14-3 ts ) accumulated this sphingolipid and was sensitive to syringomycin E. Finally, ⌬csg1/sur1 and ⌬csg2 strains defective in the transfer of mannose to inositolphosphoryl-ceramide were resistant to syringomycin E. These findings show that syringomycin E growth inhibition of yeast is promoted by the production of sphingolipids with fully elongated fatty acid chains and the mannosyl and terminal phosphorylinositol moieties of the polar head group.Syringomycin E is a member of a family of small cyclic lipodepsinonapeptides (ca. 1,200 Da) produced by the plant bacterium Pseudomonas syringae pv. syringae (38). Other members include syringomycin A 1 and G, the syringostatins, the syringotoxins, and the pseudomycins (2, 38). All possess a characteristic tetrapeptidyl sequence (dehydroaminobutanoic acid-hydroxyaspartic acid-chlorothreonine-serine) and a -hydroxy fatty acid attached to the N-terminal serine. These metabolites are fungicidal to a broad range of fungi, including yeast and human pathogens (33), and they show relatively low levels of toxicity to plants (21) and cutaneous animal tissues (33). Syringomycin E was recently shown to be partly responsible for the biological control of fungal pathogens on postharvest citrus fruits by certain P. syringae pv. syringae strains (5). Syringomycin E interacts with the fungal plasma membrane, where it causes K ϩ efflux, Ca 2ϩ influx, and changes in membrane potential by processes that are likely related to channel formation (14, 38).Molecular genetic studies with yeast were initiated to more precisely define the antifungal mechanism of action of syringomycin E. Syringomycin E-resistant mutants of Saccharomyces cerevisiae were generated to permit identification of the mutated genes by complementation (39). Two genes, ...