In order to find an industrial application for thin films of TiN and ZrN monolayers, as well as TiN/ZrN multilayers were deposited onto silicon (100) and AISI 5160 steel substrates by r.f. (13.56 MHz) multitarget magnetron sputtering from high-purity (99.5 %) Ti and (99.5%) Zr targets in an Ar (93%) / N 2 (7%) gas mixture. For their deposition, we applied a substrate bias voltage of -100 V and a target power of 350 W. The films were deposited at a pressure of 6x10 -3 mbar and a temperature of 250 o C. The structure, composition, morphology, and topography were characterized by, XRD, FTIR, SEM, AFM, and optical microscopy. Mechanical properties like hardness and elastic modulus were determined by Nanoindentation. Hardness and elastic modulus of the films increased proportionally to the number of bilayers. Finally, cutting tools were coated with 1, 2, 3, 4, 5, 6, 7, and 8 bilayers of TiN/ZrN. Cutting tests on paper blades were conducted. Increased cut quality performance was observed for cutting tools coated with 8 bilayers, as compared to uncoated tools. This work opens the possibility to use coated AISI 5160 as cutting tools for the paper industry, reducing the import of expensive high-quality tool steel.