Electrocution by power lines is one of the main causes of non-natural mortality in birds of prey. In an area in central Spain, we surveyed 6304 pylons from 333 power lines to determine electrocution rates, environmental and design factors that may influence electrocution and the efficacy of mitigation measures used to minimise electrocution cases. A total of 952 electrocuted raptors, representing 14 different species, were observed. Electrocuted raptors were concentrated in certain areas and the environmental factors associated with increased electrocution events were: greater numbers of prey animals; greater vegetation cover; and shorter distance to roads. The structural elements associated with electrocutions were shorter strings of insulators, one or more phases over the crossarm, cross-shaped design and pylon function. Of the 952 carcasses found, 148 were eagles, including golden eagle (Aquila chrysaetos), Spanish imperial eagle (Aquila adalberti) and Bonelli's eagle (Aquila fasciata). Electrocuted eagles were clustered in smaller areas than other electrocuted raptors. The factors associated with increased eagle electrocution events were: pylons function, shorter strings of insulators, higher slopes surrounding the pylon, and more numerous potential prey animals. Pylons with increased string of insulators had lower raptor electrocution rates than unimproved pylons, although this technique was unsuccessful for eagles. Pylons with cable insulation showed higher electrocution rates than unimproved pylons, both for raptors and eagles, despite this is the most widely used and recommended mitigation measure in several countries. To optimize the application of mitigation measures, our results recommend the substitution of pin-type insulators to suspended ones and elongating the strings of insulators.
Santamaria et al. Reply: Schwarzacher and Huo, in their Comment [1] to our recent Letter, claim that electrodeposited Cu films show anomalous scaling with similar roughness exponents as found by us in sputtered Fe=Cr superlattices [2]. They attribute this to the similar microstructure of Cu films and superlattices, and propose that the disagreement of scaling exponents with theoretical predictions is because grain formation is not taken into account.Surface growth models are simplified descriptions of a complex reality in which, aside from short range (interatomic) interactions, long range nonlocal effects determined by surface morphology (grains) and geometry of the incoming particle front (shadowing) play an important role in kinetic roughening. Most data showing agreement with theoretical models correspond to films grown by molecular beam epitaxy, while discrepancies are frequently encountered in surfaces grown by more complex techniques (e.g., sputtering and electrodeposition) [3].
We have performed first order reversal curve measurements of the temperature-driven metalinsulator transition in VO2 thin films, which enable quantitative analysis of the hysteresis behavior. An unexpected tail-like feature in the contour plot of the reversal curve distribution indicates the existence of metallic domains, even at temperatures below the closing of the hysteresis. These domains interact with the surrounding medium and change the reversal path relative to a path from a fully insulating state. With this in mind, and assuming that such interaction persist through the entire phase transition, we develop a model where the driving force (or energy barrier) in charge of opening a hysteresis in VO2 are inter-domain interactions. This model is intrinsically different from the Preisach model usually used to describe hysteresis; given that it looks for the microscopic origin of the hysteresis, and provides physical parameters to characterize it.
We have correlated a detailed quantitative structural analysis by x-ray diffraction, transmission electron microscopy, and high spatial resolution electron energy-loss spectroscopy imaging, with the magnetization and anisotropic magnetotransport properties in sputtered Fe/Cr superlattices. To accomplish this, we developed a technique for magnetotransport measurements in metallic superlattices with the current perpendicular to the plane of the layers ͑CPP͒. Using microfabrication techniques, we have fabricated microstructured Fe/Cr pillars embedded in SiO 2 and interconnected with Nb electrodes. Because of the uniform current distribution in the Nb electrodes and the minimization of the superlattice-electrode contact resistance, the method allows a simple and independent measurement of the superlattice resistance and giant magnetoresistance ͑GMR͒. Structural and magnetic characterization of ͓Fe ͑3 nm͒/Cr ͑1.2 nm͔͒ N superlattices ͑where N is the number of repetitions͒ indicate that the roughness is correlated and increases cumulatively through the superlattice stack with no significant change in the antiferromagnetic coupling. Both the current in-plane and CPP GMR increase with N as the roughness increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.