2021
DOI: 10.1007/s13300-021-01082-2
|View full text |Cite
|
Sign up to set email alerts
|

Prospective Independent Evaluation of the Carbohydrate Counting Accuracy of Two Smartphone Applications

Abstract: Introduction: Smartphone applications (apps) have been designed that help patients to accurately count their carbohydrate intake in order to optimize prandial insulin dose matching. Our aim was to evaluate the accuracy of two carbohydrate (carb) counting apps. Methods: Medical students, in the role of mock patients, evaluated meals using two smartphone apps: Foodvisor Ò (which uses automatic food photo recognition technology) and Glucicheck Ò (which requires the manual entry of carbohydrates with the help of a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
8
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 11 publications
(10 citation statements)
references
References 22 publications
0
8
0
1
Order By: Relevance
“…Em contrapartida, pesquisas realizadas com o intuito de avaliar a precisão da CCHO por diferentes aplicativos, obtiveram como resultado um erro absoluto, ou seja, a diferença entre o valor medido e o valor real, na contagem em torno 10-15g, a depender do sistema utilizado (Chotwanvirat et al, 2021;Joubert et al, 2021). Entretanto, quando comparado à estimativa realizada por pacientes, foram encontrados valores de erro absoluto no teor de CHO de 27,9g, sendo constatado que, quanto maior o erro absoluto do teor de CHO, maior será a variabilidade glicêmica e menor será o TIR, de tal forma que estes fatores podem ocasionar complicações metabólicas (Rhyner et al, 2016).…”
Section: Discussionunclassified
“…Em contrapartida, pesquisas realizadas com o intuito de avaliar a precisão da CCHO por diferentes aplicativos, obtiveram como resultado um erro absoluto, ou seja, a diferença entre o valor medido e o valor real, na contagem em torno 10-15g, a depender do sistema utilizado (Chotwanvirat et al, 2021;Joubert et al, 2021). Entretanto, quando comparado à estimativa realizada por pacientes, foram encontrados valores de erro absoluto no teor de CHO de 27,9g, sendo constatado que, quanto maior o erro absoluto do teor de CHO, maior será a variabilidade glicêmica e menor será o TIR, de tal forma que estes fatores podem ocasionar complicações metabólicas (Rhyner et al, 2016).…”
Section: Discussionunclassified
“…Another innovation which has shown promise in the management of type 1 diabetes is the use of applications which facilitate carbohydrate counting and bolus calculation. A number of applications are available to facilitate carbohydrate counting, however more recent developments include the launch of food identification software that calculates the carbohydrate content of food using photographs ( 115 , 116 ). This software can improve carbohydrate counting and HbA1c in a population of young adults, although its use is limited and it remains unvalidated in pregnancy ( 117 ).…”
Section: Technologiesmentioning
confidence: 99%
“…An image classification model may learn to predict whether fresh photos belong to any classes it has been trained in given enough training data (typically hundreds or thousands of images per label), and this prediction process is called inference. TensorFlow image classification API were used to conduct image classification tests with flowers [20], wildlife animals [22], airplanes and birds, horses, dogs, cats, and humans [23], and common garbage [24]. The test accuracies for the investigations ranged from 87.2% to 99%, which is almost accurate.…”
Section: Image Recognition Using Tensorflowmentioning
confidence: 99%