A sequential mucosal prime-boost vaccine regimen of oral attenuated (Att) human rotavirus (HRV) priming followed by intranasal (i.n.) boosting with rotavirus protein VP2 and VP6 rotavirus-like particles (2/6-VLPs) has previously been shown to be effective for induction of intestinal antibody-secreting cell (ASC) responses and protection in gnotobiotic pigs. Because serum or fecal antibody titers, but not intestinal ASC responses, can be used as potential markers of protective immunity in clinical vaccine trials, we determined the serum and intestinal antibody responses to this prime-boost rotavirus vaccine regimen and the correlations with protection. Gnotobiotic pigs were vaccinated with one of the two sequential vaccines: AttHRV orally preceding 2/6-VLP (VLP2x) vaccination (AttHRV/VLP2x) or following VLP2x vaccination (VLP2x/AttHRV) given i.n. with a mutant Escherichia coli heat-labile toxin (mLT) as adjuvant. These vaccines were also compared with three i.n. doses of VLP؉mLT (VLP3x) Group A rotaviruses (RVs) are the most common dehydrating diarrheal agents of infants and young children worldwide (2, 4). Human RV (HRV) infections range from asymptomatic conditions to severe dehydrating gastroenteritis resulting in hospitalization and death (2, 4). Withdrawal of the live oral rhesus RV tetravalent vaccine (24) because of potential safety concerns (intussusception) has prompted the development and evaluation of recombinant nonreplicating candidate HRV vaccines. A sequential prime-boost vaccine regimen of priming with an oral HRV vaccine followed by intranasal (i.n.) boosting with RV protein VP2 and VP6 RV-like particles (2/6-VLPs) has previously been shown to be effective for induction of intestinal antibody-secreting cell (ASC) responses and protection in gnotobiotic pigs. However, priming and boosting with nonreplicating 2/6-VLPs did not provide protection (39). Data from previous studies with animals and humans have indicated a correlation between the titers of antibodies to RV in serum and the numbers of RV-specific ASCs in the intestinal tissues (5, 33) after RV infection. An earlier study with gnotobiotic pigs orally infected with the virulent Wa strain of HRV also showed that immunoglobulin A (IgA) ASC responses in intestinal tissues were correlated with serum IgA antibody responses (33), presumably reflecting the transit of intestinally derived IgA ASCs in the blood after RV infection. Furthermore, both intestinal IgA ASC numbers (in pigs) and serum IgA antibody titers (in pigs and humans) were correlated with protection against reinfection (33,35,43). However, similar correlates between antibody responses and protection have not been evaluated for nonreplicating i.n. RV vaccines or sequential prime-boost vaccine regimens with neonatal pigs or humans. Studies with adult mice showed that the protective immunity against RV infection elicited by 2/6-VLP or chimeric VP6 i.n. vaccines alone is not associated with induction of serum or intestinal RV antibodies (7,20,25). The discrepancies in the findings from...