The release of the prostanoids prostaglandin D2 (PGDJ, prostaglandin E2 (PGE,) and thromboxane induced by zymosan and phorbol ester in cultured rat Kupffer cells was found to depend on the extracellular concentration of Ca2+ to some extent. Prostanoid formation following the addition of the calcium ionophore A 23187 was totally inhibited when calcium ions were withdrawn from the medium whereas the prostanoid synthesis from added arachidonic acid was independent of Ca2+. A half-maximal rate of PGE, release by cells treated with zymosan, phorbol ester or A23187 was obtained at 0.6-0.7 pM free extracellular Ca2+ and 2 100 pM free Ca2+ was required to stimulate PGE, formation maximally.The calmodulin antagonist R24571 partially inhibited the release of PGEz elicited by zymosan and A23187 but not by phorbol ester or arachidonic acid. Verapamil and nifedipine, two calcium channel blockers, had no effect on the formation of PGE, irrespective of the stimulus. TMB 8 [3,4,5-trimethoxybenzoic acid 8-(diethylamino)-octyl ester] an intracellular calcium antagonist, inhibited the synthesis of PGE, induced by zymosan and phorbol ester.The superoxide formation following the addition of zymosan and phorbol ester was not influenced by removal of calcium ions from the medium or by addition of the various calcium antagonists. The data presented here suggest that Ca2+-dependent reactions are involved in the synthesis of prostanoids induced by zymosan and phorbol ester and that both extracellular Ca2+ and mobilization of Ca2+ from intracellular stores are needed to induce maximally the production of prostanoids in cultured rat Kupffer cells.