Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Registration and fusion of magnetic resonance (MR) and 3D transrectal ultrasound (TRUS) images of the prostate gland can provide high-quality guidance for prostate interventions. However, accurate MR-TRUS registration remains a challenging task, due to the great intensity variation between two modalities, the lack of intrinsic fiducials within the prostate, the large gland deformation caused by the TRUS probe insertion, and distinctive biomechanical properties in patients and prostate zones. To address these challenges, a personalized model-to-surface registration approach is proposed in this study. The main contributions of this paper can be threefold. First, a new personalized statistical deformable model (PSDM) is proposed with the finite element analysis and the patient-specific tissue parameters measured from the ultrasound elastography. Second, a hybrid point matching method is developed by introducing the modality independent neighborhood descriptor (MIND) to weight the Euclidean distance between points to establish reliable surface point correspondence. Third, the hybrid point matching is further guided by the PSDM for more physically plausible deformation estimation. Eighteen sets of patient data are included to test the efficacy of the proposed method. The experimental results demonstrate that our approach provides more accurate and robust MR-TRUS registration than state-of-the-art methods do. The averaged target registration error is 1.44 mm, which meets the clinical requirement of 1.9 mm for the accurate tumor volume detection. It can be concluded that the presented method can effectively fuse the heterogeneous image information in the elastography, MR, and TRUS to attain satisfactory image alignment performance.
Registration and fusion of magnetic resonance (MR) and 3D transrectal ultrasound (TRUS) images of the prostate gland can provide high-quality guidance for prostate interventions. However, accurate MR-TRUS registration remains a challenging task, due to the great intensity variation between two modalities, the lack of intrinsic fiducials within the prostate, the large gland deformation caused by the TRUS probe insertion, and distinctive biomechanical properties in patients and prostate zones. To address these challenges, a personalized model-to-surface registration approach is proposed in this study. The main contributions of this paper can be threefold. First, a new personalized statistical deformable model (PSDM) is proposed with the finite element analysis and the patient-specific tissue parameters measured from the ultrasound elastography. Second, a hybrid point matching method is developed by introducing the modality independent neighborhood descriptor (MIND) to weight the Euclidean distance between points to establish reliable surface point correspondence. Third, the hybrid point matching is further guided by the PSDM for more physically plausible deformation estimation. Eighteen sets of patient data are included to test the efficacy of the proposed method. The experimental results demonstrate that our approach provides more accurate and robust MR-TRUS registration than state-of-the-art methods do. The averaged target registration error is 1.44 mm, which meets the clinical requirement of 1.9 mm for the accurate tumor volume detection. It can be concluded that the presented method can effectively fuse the heterogeneous image information in the elastography, MR, and TRUS to attain satisfactory image alignment performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.