Accurate segmentation of cervical cells in Pap smear images is an important step in automatic pre-cancer identification in the uterine cervix. One of the major segmentation challenges is overlapping of cytoplasm, which has not been well-addressed in previous studies. To tackle the overlapping issue, this paper proposes a learning-based method with robust shape priors to segment individual cell in Pap smear images to support automatic monitoring of changes in cells, which is a vital prerequisite of early detection of cervical cancer. We define this splitting problem as a discrete labeling task for multiple cells with a suitable cost function. The labeling results are then fed into our dynamic multi-template deformation model for further boundary refinement. Multi-scale deep convolutional networks are adopted to learn the diverse cell appearance features. We also incorporated high-level shape information to guide segmentation where cell boundary might be weak or lost due to cell overlapping. An evaluation carried out using two different datasets demonstrates the superiority of our proposed method over the state-of-the-art methods in terms of segmentation accuracy.
The quality of ultrasound (US) images for the obstetric examination is crucial for accurate biometric measurement. However, manual quality control is a labor intensive process and often impractical in a clinical setting. To improve the efficiency of examination and alleviate the measurement error caused by improper US scanning operation and slice selection, a computerized fetal US image quality assessment (FUIQA) scheme is proposed to assist the implementation of US image quality control in the clinical obstetric examination. The proposed FUIQA is realized with two deep convolutional neural network models, which are denoted as L-CNN and C-CNN, respectively. The L-CNN aims to find the region of interest (ROI) of the fetal abdominal region in the US image. Based on the ROI found by the L-CNN, the C-CNN evaluates the image quality by assessing the goodness of depiction for the key structures of stomach bubble and umbilical vein. To further boost the performance of the L-CNN, we augment the input sources of the neural network with the local phase features along with the original US data. It will be shown that the heterogeneous input sources will help to improve the performance of the L-CNN. The performance of the proposed FUIQA is compared with the subjective image quality evaluation results from three medical doctors. With comprehensive experiments, it will be illustrated that the computerized assessment with our FUIQA scheme can be comparable to the subjective ratings from medical doctors.
The gap between the computational and semantic features is the one of major factors that bottlenecks the computer-aided diagnosis (CAD) performance from clinical usage. To bridge this gap, we exploit three multi-task learning (MTL) schemes to leverage heterogeneous computational features derived from deep learning models of stacked denoising autoencoder (SDAE) and convolutional neural network (CNN), as well as hand-crafted Haar-like and HoG features, for the description of 9 semantic features for lung nodules in CT images. We regard that there may exist relations among the semantic features of "spiculation", "texture", "margin", etc., that can be explored with the MTL. The Lung Image Database Consortium (LIDC) data is adopted in this study for the rich annotation resources. The LIDC nodules were quantitatively scored w.r.t. 9 semantic features from 12 radiologists of several institutes in U.S.A. By treating each semantic feature as an individual task, the MTL schemes select and map the heterogeneous computational features toward the radiologists' ratings with cross validation evaluation schemes on the randomly selected 2400 nodules from the LIDC dataset. The experimental results suggest that the predicted semantic scores from the three MTL schemes are closer to the radiologists' ratings than the scores from single-task LASSO and elastic net regression methods. The proposed semantic attribute scoring scheme may provide richer quantitative assessments of nodules for better support of diagnostic decision and management. Meanwhile, the capability of the automatic association of medical image contents with the clinical semantic terms by our method may also assist the development of medical search engine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.