Studies of nitric oxide over the past two decades have highlighted the fundamental importance of gaseous signaling molecules in biology and medicine. The physiological role of other gases such as carbon monoxide and hydrogen sulfide (H 2 S) is now receiving increasing attention. Here we show that H 2 S is physiologically generated by cystathionine γ-lyase (CSE) and that genetic deletion of this enzyme in mice markedly reduces H 2 S levels in the serum, heart, aorta, and other tissues. Mutant mice lacking CSE display pronounced hypertension and diminished endothelium-dependent vasorelaxation. CSE is physiologically activated by calcium-calmodulin, which is a mechanism for H 2 S formation in response to vascular activation. These findings provide direct evidence that H 2 S is a physiologic vasodilator and regulator of blood pressure.Nitric oxide (NO) and carbon monoxide (CO) are established physiologic messenger molecules, and NO has an important role as an endothelial cell-derived relaxing factor (EDRF) and regulator of blood pressure (1,2). Indirect evidence has implicated another endogenous gasotransmitter, hydrogen sulfide (H 2 S), in similar functions (3-7). H 2 S can be produced by cystathionine γ-lyase (CSE) or cystathionine β-synthase (CBS) (3,4), but definitive evidence for either of these enzymes in the physiologic formation of H 2 S is lacking.To investigate the role of H 2 S as a physiologic vasorelaxant and determinant of blood pressure, we generated mice with a targeted deletion of the gene encoding CSE (8) (fig. S1, A to C). The homozygous (CSE −/− ) and heterozygous (CSE −/+ ) mutant mice were viable, fertile, and indistinguishable from their control wild-type littermates (CSE +/+ ) in terms of growth pattern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.