A B S T R A C T PurposeRecent increases in incidence and survival of oropharyngeal cancers in the United States have been attributed to human papillomavirus (HPV) infection, but empirical evidence is lacking. Patients and MethodsHPV status was determined for all 271 oropharyngeal cancers collected by the three population-based cancer registries in the Surveillance, Epidemiology, and End Results (SEER) Residual Tissue Repositories Program by using polymerase chain reaction and genotyping (Inno-LiPA), HPV16 viral load, and HPV16 mRNA expression. Trends in HPV prevalence across four calendar periods were estimated by using logistic regression. Observed HPV prevalence was reweighted to all oropharyngeal cancers within the cancer registries to account for nonrandom selection and to calculate incidence trends. Survival of HPV-positive and HPV-negative patients was compared by using Kaplan-Meier and multivariable Cox regression analyses. ResultsHPV prevalence in oropharyngeal cancers significantly increased over calendar time regardless of HPV detection assay (P trend Ͻ .05). For example, HPV prevalence by Inno-LiPA increased from 16.3% during 1984 to 1989 to 71.7% during 2000 to 2004. Median survival was significantly longer for HPV-positive than for HPV-negative patients (131 v 20 months; log-rank P Ͻ .001; adjusted hazard ratio, 0.31; 95% CI, 0.21 to 0.46). Survival significantly increased across calendar periods for HPV-positive (P ϭ .003) but not for HPV-negative patients (P ϭ .18). Population-level incidence of HPV-positive oropharyngeal cancers increased by 225% (95% CI, 208% to 242%) from 1988 to 2004 (from 0.8 per 100,000 to 2.6 per 100,000), and incidence for HPV-negative cancers declined by 50% (95% CI, 47% to 53%; from 2.0 per 100,000 to 1.0 per 100,000). If recent incidence trends continue, the annual number of HPV-positive oropharyngeal cancers is expected to surpass the annual number of cervical cancers by the year 2020. ConclusionIncreases in the population-level incidence and survival of oropharyngeal cancers in the United States since 1984 are caused by HPV infection.
Studies of nitric oxide over the past two decades have highlighted the fundamental importance of gaseous signaling molecules in biology and medicine. The physiological role of other gases such as carbon monoxide and hydrogen sulfide (H 2 S) is now receiving increasing attention. Here we show that H 2 S is physiologically generated by cystathionine γ-lyase (CSE) and that genetic deletion of this enzyme in mice markedly reduces H 2 S levels in the serum, heart, aorta, and other tissues. Mutant mice lacking CSE display pronounced hypertension and diminished endothelium-dependent vasorelaxation. CSE is physiologically activated by calcium-calmodulin, which is a mechanism for H 2 S formation in response to vascular activation. These findings provide direct evidence that H 2 S is a physiologic vasodilator and regulator of blood pressure.Nitric oxide (NO) and carbon monoxide (CO) are established physiologic messenger molecules, and NO has an important role as an endothelial cell-derived relaxing factor (EDRF) and regulator of blood pressure (1,2). Indirect evidence has implicated another endogenous gasotransmitter, hydrogen sulfide (H 2 S), in similar functions (3-7). H 2 S can be produced by cystathionine γ-lyase (CSE) or cystathionine β-synthase (CBS) (3,4), but definitive evidence for either of these enzymes in the physiologic formation of H 2 S is lacking.To investigate the role of H 2 S as a physiologic vasorelaxant and determinant of blood pressure, we generated mice with a targeted deletion of the gene encoding CSE (8) (fig. S1, A to C). The homozygous (CSE −/− ) and heterozygous (CSE −/+ ) mutant mice were viable, fertile, and indistinguishable from their control wild-type littermates (CSE +/+ ) in terms of growth pattern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.